Magnetismus A - Z

Monopol, Dipol und Multipol

Eine einzelne Ladung wird als Monopol bezeichnet (von monos (griech.) = allein, einzeln). Von ihr geht ein elektrisches Monopolfeld aus. Das Magnetfeld einer Leiterschleife oder das elektrische Feld von 2 entgegengesetzt geladenen Teilchen ist dagegen ein Dipolfeld (von di (gr.) = zwei). Zwei entgegengesetzte Ladungen mit festem Abstand entsprechen dem Dipol. Es gibt keine magnetischen Monopole und demnach nur Magnete mit einem Nord- und einem Südpol. Bei komplizierteren Ladungsverteilungen spricht man von Multipolen.
Monopol, Dipol, Quadrupol und, allgemein gesprochen, höhere Multipole, sind Bezeichnungen für entsprechend strukturierte Anteile elektrischer oder magnetischer Felder. Mit den zugehörigen Momenten, also Monopolmoment, Dipolmoment und Quadrupolmoment, werden mathematisch unterscheidbarer Anteile von beliebig strukturierten elektrischen oder magnetischen Feldern charakterisiert. Dabei ist das elektrische Feld einer Punktladung ein reines Monopolfeld. Dieses Feld besteht nur aus einem Monopolmoment.
Bei magnetischen Feldern gibt es grundsätzlich keinen Monopol. Dies wird durch die Gesetze des Elektromagnetismus, die Maxwellgleichungen, ausgedrückt. Man sagt, dass das niedrigste nichtverschwindende Multipolmoment des magnetischen Feldes das Dipolmoment ist.
Da es keine magnetischen Monopole gibt, kann auch kein Permanentmagnet mit nur einem einzigen Pol hergestellt werden. Jeder Magnet hat mindestens 2 Pole, einen Nord- und einen Südpol.
Die Abbildung zeigt einen elektrischen Monopol. Er ist gemäß der Maxwellgleichungen die Quelle des elektrischen Feldes. Die Feldlinien verlaufen von der Ladung weg (bei neg. Ladungen auf diese zu) wie die Stacheln eines Igels. In der Mitte ist ein elektrischer Dipol gezeigt. Rechts ist das Magnetfeld einer stromdurchflossenen Leiterschleife zu sehen. Auch ein einzelner Elektronenspin, also ein sogenannter Elementarmagnet, hat diese Form des Magnetfeldes. Aus den Maxwellgleichungen folgt, dass diese Form des Magnetfeldes die einfachstmögliche Form ist. Sie gleicht von außen dem Feld des elektrischen Dipols. Deshalb spricht man auch davon, dass das Magnetfeld ein Dipolfeld ist. Komplizierte Stromverteilungen haben auch Feldanteile höherer Ordnung. Es gibt jedoch keinen magnetischen Monopol.
Die Abbildung zeigt die Amplitude elektrischer Felder in der Ebene der Ladungen. Die gezeigten Flächen sind dabei dreidimensionale Darstellungen der Stärke des elektrischen Feldes in dieser Ebene und unterschiedlich von den direkten Darstellungen der Felder über Feldlinien wie in der letzten Abbildung gezeigt. Bei einer Darstellung der Feldlinien wird auch die Richtung der magnetischen Kräfte angezeigt.
Hier dagegen sieht man links einen Graph für die Stärke eines elektrischen Monopolfeldes, das über die Farbdarstellung des 3D-Plots dargestellt wird. Das elektrische Feld ist am Ort der Ladung besonders groß und klingt dann mit dem Quadrat des Abstandes ab. Rechts ist ein elektrisches Dipolfeld zu sehen. Das Dipolfeld wird von zwei entgegengesetzten Ladungen erzeugt. Magnetische Felder sind immer Dipolfelder oder Felder höherer Ordnung, da es keine einzelnen magnetischen Ladungen gibt.
Mathematisch wird die Berechnung der verschiedenen Multipolmomente einer beliebigen Feldverteilung mit Hilfe des Verfahrens der sogenannten Multipolentwicklung gelöst. Dabei wird eine sogenannte Reihenentwicklung der Abstandsabhängigkeit für das magnetische Feld vorgenommen.
In der Elektrodynamik entstehen durch die Bewegungen der elektrischen und magnetischen Felder neue Phänomene wie elektromagnetische Wellen. Auch hierfür ist eine Multipolentwicklung möglich. Man erhält dann die Multipolmomente der Strahlungsfelder. Die niedrigste nichtverschwindende Multipolstrahlung ist die Dipolstrahlung.
Beispielhaft soll das mathematische Verfahren der Multipolentwicklung magnetischer Felder einer beliebigen Stromverteilung dargestellt werden. Das Verfahren ist sehr aufwändig und wird hier nur gezeigt, um eine typische Anwendung der höheren Mathematik in der Physik zu demonstrieren.
Die Multipolentwicklung wird meist nicht direkt an der Formel für das magnetische Feld oder die magnetische Flussdichte durchgeführt sondern am magnetischen Vektorpotenzial \(\vec{A}(\vec{r})\), welches vom Ort \(\vec{r}\) abhängt:
\(\vec{A}(\vec{r})=\frac{\mu_0}{4\pi}\int_{R^3}d^3r^{'}\frac{\vec{j}(\vec{r}^{'} )}{\left|\vec{r}-\vec{r}^{'} \right|}\)
(mit der sogenannten Coulomb- Eichung \(\vec{\nabla}\cdot\vec{A}(\vec{r})=0\)
Dabei bezeichnet \(\vec{j}(\vec{r}^{'} )\) die Stromverteilung am Ort der sogenannten "gestrichenen" Variablen \(\vec{r}^{'}\),
\(\mu_0\) bezeichnet die magnetische Permeabilität des Vakuums.
\(\left|\vec{r}-\vec{r}^{'} \right|\) bezeichnet den momentanen Abstand zwischen dem Punkt, an welchem das Magnetfeld bestimmt wird (\(\vec{r}\)) und dem Ort der Ladungsverteilung (\(\vec{r}^{'}\)).
Nun wird eine Taylorentwicklung der Funktion \(\frac{1}{\left|\vec{r}-\vec{r}^{'} \right|}\) um den Ursprung der gestrichenen Koordinaten (welche die Stromverteilung charakterisieren) durchgeführt:
\(\frac{1}{\left|\vec{r}-\vec{r}^{'} \right|}=\frac{1}{r}+\frac{1}{r^3}\cdot(\vec{r}\cdot\vec{r}^{'})+...\)
Dabei sind nur die ersten beiden Ordnungen der Entwicklung gezeigt. Die höheren Ordnungen sind durch ... abgekürzt.
Somit folgt:
\(\vec{A}(\vec{r})=\frac{\mu_0}{4\pi\cdot{r}}\int_{R^3}d^3r^{'}\vec{j}(\vec{r}^{'} )+\frac{\mu_0}{4\pi\cdot{r^3}}\int_{R^3}d^3r^{'}\vec{j}(\vec{r}^{'} )\cdot(\vec{r}\cdot\vec{r}^{'})+...\)
Mit dem Monopolmoment \(\frac{\mu_0}{4\pi\cdot{r}}\int_{R^3}d^3r^{'}\vec{j}(\vec{r}^{'} )\)
und dem Dipolmoment \(\frac{\mu_0}{4\pi\cdot{r^3}}\int_{R^3}d^3r^{'}\vec{j}(\vec{r}^{'} )\cdot(\vec{r}\cdot\vec{r}^{'})\).
Die komplizierteren höheren Momente werden an dieser Stelle nicht mehr gezeigt.

Das Urheberrecht am gesamten Inhalt des Kompendiums (Texte, Fotos, Abbildungen etc.) liegt beim Autor Franz-Josef Schmitt. Die ausschließlichen Nutzungsrechte für das Werk liegen bei Webcraft AG, Schweiz (als Betreiberin von supermagnete.at). Ohne ausdrückliche Genehmigung von Webcraft AG darf der Inhalt weder kopiert noch anderweitig verwendet werden. Verbesserungsvorschläge oder Lob betreffend das Kompendium richten Sie bitte per E-Mail an fjschmitt@supermagnete.at
© 2008-2017 Webcraft AG